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Extremely simple nonlinear noise-reduction method
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A very simple method to reduce noise in experimental data with nonlinear time evolution is presented.
Locally constant fits are used to obtain a less noisy trajectory consistent with the dynamics as well as
with the measured data. Neighborhoods are defined by coordinates both from the past and from the fu-
ture. The method is applied to the Hénon map and to a discretized form of the Mackey-Glass equation.

PACS number(s): 05.45.+b, 06.50.Dc

I. INTRODUCTION

In the past decades progress has been made in the
analysis of time series from phenomena with nonlinear
behavior (for a review see, e.g., [1]). Every realistic mea-
surement is to some extent contaminated by noise, which
limits the performance of many techniques of modeling,
prediction, and control. Thus, an important goal of
time-series analysis is noise reduction. Traditional linear
filters are based on the assumption that signal and noise
components can be distinguished in the spectrum. For
coarsely sampled signals from nonlinear systems this
poses a problem since the signal itself can have a broad-
band spectrum. In this case one has to apply nonlinear
methods in order not to distort the signal.

A number of nonlinear noise reduction algorithms
have been developed by different authors [2-7] that take
into account the nonlinear nature of the data. A compar-
ison of the more recent approaches will be included in
[8], where also a compromise is proposed which is con-
sidered optimal at this time. Different as they are, all of
these methods have in common that their implementa-
tion is nontrivial, in particular if one is interested in op-
timal results.

The purpose of this paper is to present a nonlinear
method of noise reduction which is very easy to imple-
ment and which needs only little resources (CPU time
and memory). Except for small data sets, the simplicity
has to be bought by slightly weaker results.

II. ALGORITHM

Suppose we have a scalar time series {x;},i=1,...,T,
where the x; are composed of a clean signal y; with some
noise 7; added, x; =y, +7;. Then o>=(%?) is called the
absolute noise level.

The main idea of the method presented in this paper is
to replace each measurement x; by the average value of
this coordinate over points in a suitably chosen neighbor-
hood. The neighborhoods are defined in a phase space
reconstructed by delay coordinates. To define the neigh-
borhoods, first fix positive integers k and / and construct
embedding vectors

X=X oo o5 Xigg)

as usual [9]. Note that past and future coordinates are
involved.

Further, choose a radius € for the neighborhoods. For
each value x; find the set U of all neighbors x; for which

sup{ ‘xj—k =X _glsees lxj+1_xi+l|}E“xj_xi“sup<6 ’

i.e., all segments of the trajectory which are close during

(a)

Xn+1

Xn+1

-2 Xn 1.5

FIG. 1. Phase plots of iterates of the Hénon map. (a) A sam-
ple with 5% noise and (b) the same after noise reduction. Each
panel contains 20 000 points.
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a time lasting from k iterations in the past to / iterations
in the future.

Replace the “present” coordinate x; by its mean value
[10] in 25,

1
x forr = X . (1)
P T 2

The reason why only the central coordinate in the delay
window is corrected is that only this coordinate is op-
timally controlled from past and future, i.e., its value is
fixed along both the unstable and the stable manifolds
[11]. The errors induced by this replacement are of sta-
tistical and geometrical nature. If the points in %S are re-
garded as a random sample distributed according to the
natural measure, the statistical uncertainty of the center
of mass will be damped out like |%/¢| ~'/? whereas the er-
ror introduced by replacing the geometrical center of the
neighborhood by the center of mass depends on the
nonuniformity of the distribution within % and will in
general grow with the size of the neighborhood. We can
expect the method to work when these errors are smaller
than the individual errors of the coordinates. Figure 1
shows the effect of this procedure on a noisy sample of
the Hénon map.

III. IMPLEMENTATION AND RESULTS

The implementation of the algorithm is straightfor-
ward. To obtain optimal results it is essential to choose
€, the size of the neighborhoods, appropriately. For the
examples studied in this paper a value € of about three
times the amplitude of the noise o was found to be op-
timal. In Fig. 2 the dependence of the amount of noise
reduction on the parameter € is shown. In an experimen-
tal situation one would have chosen € at the point where
the correction starts increasing more slowly. Above this
value the geometrical error leads to a “correction” in the
wrong direction.

If this behavior is.not pronounced enough to estimate
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FIG. 2. Dependence of the amount of noise reduction in the
first step on the size € of the neighborhoods chosen. For 10000
points of the Hénon map the initial amount of noise (5%), the
rms of the correction made, and the deviation of the resulting
signal from the noise-free one are shown.
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the optimal value of € one can estimate the noise level
from the correlation integral. An enlarged scaling region
of the correlation integral after applying the algorithm
can be taken as an indicator of noise reduction. In cases
of doubt smaller values of € are preferable since there is
little risk of doing harm to the data by choosing small e.
In the worst case no neighbors are found, in which case
the center of mass coincides with the original coordinate
and no correction is made. This method does not have
the problem of singular fits encountered in higher-order
approximations [3-8].

With experimental data care should be taken and a sta-
tistical analysis of the corrections made. When only ad-
ditive noise is removed, the corrections and the remain-
ing signal should be uncorrelated. A problem common to
all noise reduction methods is how to judge the effect of
the procedure on a given experimental data set. A dis-
cussion of possible diagnostic tools is beyond the scope of
this note, but material in [12] is applicable for the present
algorithm as well.

The procedure can be iterated. If one takes the rms of
the correction made as a new value for €, € will decrease
exponentially with the number of iterations until eventu-
ally (typically after 2—6 iterations) no neighbors are
found for any point and no further correction is made.

The only CPU time-consuming step is the neighbor
search. Therefore it is essential to apply a fast searching
algorithm. Recommended are box-assisted methods us-
ing linked lists as, e.g., described in [1,13,14]. Using this
technique, the complete noise reduction algorithm can be
coded in a few lines [15]. Even to handle long data sets
(say 65000 points), only a few minutes are needed on a
DEC station 5000, depending on the noise level. Sets of
about 1000 points can be processed in a few seconds.

To quantify the results, define 74, as, e.g., in [1]:

1/2

D= flxioyse )

rq =
yn 2 (xicorr_f(xicgr{,. . ))2
i

This is the improvement of the deviation from the exact
dynamical evolution. The improvement of the distance
from the original noise-free trajectory is given by

1/2

> (x;—y; )?
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i
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In this paper we apply the algorithm to the Hénon map
and a discretized version of the Mackey-Glass equation.
Results are given in Figs. 1 and 3 and in Tables I and II.
For the Hénon map [16] y, . ;=1—ay?+by, , we
choose the canonical parameter values a=1.4 and
b=0.3.

The Mackey-Glass delay differential equations [17] is
integrated with a discrete time step so that it can be writ-
ten as a (M + 1)-dimensional map [18]:
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1
Y1 = ar gy | TETI
tra Yn—-Mm Yn—M+1
1) 1+ %0

(2)

We choose parameter values @ =0.2, b=0.1, and 7=30.
To obtain a reasonably sampled signal we choose M =40
corresponding to a step size Ar=7/M=0.75. That
means that the integration is quite rough and maybe devi-
ates considerably from the original differential equation.
Indeed the attractor dimension is found to be slightly
below 3 (as opposed to 3.1 for the differential equations).
The only reason to deal with the whole—still
oversampled —signal is to be able to compute 74,,. The
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high values of r4, (see Table II) are partly due to the fact
that it is always easier to clean an oversampled signal.
Even a simple smoothing procedure would reduce the
noise to some extent. In fact, the present method degen-
erates to a smoothing scheme in the limit of high sam-
pling and small € since the neighbors found are points
nearby in time.

The results in Tables I and II show that the method is
surprisingly efficient, in particular on short data sets with
a visible amount of noise. This is the type of data one
often has to deal with in field experiments. A different
question is what can be deduced from such small samples
even if they were noise free.

In order to test the effect of noise reduction on dimen-
sion estimates we computed the correlation sum C, for
three samples obtained from Eq. (2). Sample (a) consist-
ed of 20 000 noise-free data points, sample (b) of the same
points with 5% Gaussian noise added, and (c) of sample

d = d log Cs(€)
off =

d loge

d log Cs(¢)

deﬂ =4 loge

FIG. 3. Local slopeés in a log,C,(€) vs log,e
plot for 20000 iterates of the discretized
Mackay-Glass equation (2). Obtained from (a)
the noise-free sample, (b) the same data with
5% Gaussian noise added, and (c) the noisy
data of panel (b) after six steps of noise reduc-
tion. All three panels were obtained with a de-
, lay time of two steps and embedding dimen-

sions 2-20.

__ d log Cy(e)
deﬁ - log e
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TABLE I. Noise reduction on Hénon map.
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TABLE II. Noise reduction on Mackay-Glass equation.

T % noise 7 dyn ro T % noise ¥ dyn ro
500 5 1.7 1.4 500 5 5.1 2.0
10 2.1 1.7 10 7.1 2.4
1000 5 2.4 1.8 1000 5 7.5 2.2
10 3.6 2.2 10 9.0 2.1
5000 5 4.4 2.5 5000 5 11.5 2.4
10 5.6 2.8 10 13.3 2.2
20000 1 3.8 2.4 20000 1 4.6 1.6
5 7.8 3.1 5 11.9 2.3
10 7.5 2.9 10 15.2 2.3
65000 1 6.4 3.0 65000 1 6.0 1.7
5 9.9 33 5 12.8 2.4
10 7.8 2.9 10 15.8 2.3
Ref. [4] 4.76
Ref. [5] 9.65 4.05
Ref. [8] 12.5 4.4 Finally it should be mentioned that the method can be

(b) after six iterations of nioise reduction. The correlation
sum [18] is defined as

Cye)=—= S 6le—|x,—x,1) , 3)
T i,]

where x, are the embedding vectors. Figure 3 clearly
shows that the scaling region is improved towards what
can be obtained from the noise free signal.

The present method works best on moderate amounts
of data with noise levels above 1%. If longer series with
only a small amount of noise are available, e.g., in a labo-
ratory experiment, it will be worth while to apply a more
sophisticated procedure [8] to suppress noise well below
1%, which is indeed desirable to observe scaling proper-
ties at small length scales.

easily generalized to multivariate time series. Zeroth-
order fits also give a simple and very robust forecasting
method. Their use for this purpose was proposed in [19].

In conclusion an extremely simple and quite efficient
noise reduction scheme based on ideas from nonlinear dy-
namics has been presented.

ACKNOWLEDGMENTS

I want to thank my colleagues in Wuppertal, namely
Peter Grassberger and Arkady Pikovsky, for encouraging
discussions. Rainer Hegger provided assistance by repro-
ducing the results. The author received a grant within
the framework of the SCIENCE program of the Commis-
sion of the European Communities under Contract No.
B/SC1*-900557.

*Permanent address: Physics Department, University of
Wuppertal, Gauss-Strasse 20, D-5600 Wuppertal 1, Ger-
many.

[1] P. Grassberger, T. Schreiber, and C. Schaffrath, J. Bifur-
cat. Chaos, 1, 521 (1991).

[2] S. M. Hammel, Phys. Lett. A 148, 421 (1990).

[3]J. D. Farmer and J. Sidorowich, Physica D 47, 373 (1991).

[4] E. J. Kostelich and J. A. Yorke, Phys. Rev. A 38, 1649
(1988).

[5] T. Schreiber and P. Grassberger, Phys. Lett. A 160, 411
(1991).

[6] T. Sauer, Physica D 58, 193 (1992).

[7] R. Cawley and G.-H. Hsu, Phys. Rev. A 46, 3057 (1992).

[8] P. Grassberger, R. Hegger, H. Kantz, C. Schaffrath, and
T. Schreiber, Chaos (to be published).

[9] T. Sauer, J. Yorke, and M. Casdagli, J. Stat. Phys. 65, 579
(1991).

[10] With small data sets some points happen to have the same
neighborhoods and are therefore corrected to exactly the
same value. This can be avoided [A. Pikovsky (private
communication)] by introducing distance dependent
weights in Eq. (1). In the examples studied in this paper
this leads to a slight improvement of the results.

[11] If all coordinates would be corrected one would obtain the
trivial case of the methods of [6] and [7] in which all direc-
tions are projected out.

[12] H. Kantz, in Predicting the Future and Understanding the
Past: A Comparison of Approaches, Proceedings of the
NATO ARW on Time Series Analysis and Forecasting
held in Santa Fe, NM, 1992, edited by A. S. Weigend and
N. A. Gershenfeld Santa Fe Institute Studies in the Sci-
ence of Complexity (Addison-Wesley, Reading, MA, in
press, 1993).

[13] P. Grassberger, Phys. Lett. A 148, 63 (1990).

[14] T. Schreiber, in Predicting the Future and Understanding
the Past: A Comparison of Approaches (Ref. [12]).

[15] The source code in the form of a FORTRAN subroutine is
available from the author; electronic address: schreib @
complex.nbi.dk

[16] M. Hénon, Commun. Math. Phys. 50, 169 (1976).

[17] M. C. Mackey and L. Glass, Science 197, 287 (1977).

[18] P. Grassberger and I. Procaccia, Phys. Rev. A 28, 2591
(1983).

[19] A. Pikovsky, Sov. J. Commun. Technol. Electron. 31, 81
(1986).



